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This work presents the determination of a semiclassical conformational partition function for bioactive
compounds. The proposed partition function includes the effect of the rotovibrational coupling and the
conformational kinetic energy, through the rotovibrational G matrix. In addition, the model considers a relaxed
potential that includes the effect of the nonconformational, internal, coordinates. Comparison of results from
harmonic and anharmonic vibrational models shows that the present partition function is a good approximation
to the quantum one. The effect of the rotovibrational coupling and conformational kinetic energy, i.e. the G
matrix, on the partition function is analyzed considering the biologically active, protonated, forms of nicotine
and the nicotinic analgesic ABT-594. All energetic and structural data are derived from ab initio results at
the MP2/cc-pVDZ level. Only two conformers are found to be significantly populated at physiological
temperature in the nicotine case. The relative population of both conformers is clearly affected by the value
of the G matrix. For ABT-594, several minima on the conformational potential energy hypersurface are found.
However, only one conformer collects the population. Here, the distribution of population is only slightly
affected by the G matrix. Performing simulations with a double minima potential, we show that for conformers
separated by energy differences about or higher than 2 kcal mol-1, the effect of the G matrix can be neglected.

Introduction

Conformational flexibility is an important factor to take into
account when modeling the activity of bioactive compounds.
In particular, the three-dimensional arrangement of pharma-
cophoric groups is a function of the conformational coordinates.
To adopt the optimal disposition for interaction with the
receptor’s active site, the conformational coordinates of the
bioactive agent must change accordingly.

Usually, the conformational problem is tackled from a
conformational analysis on the considered coordinates. Thus,
on the grounds of the Born-Oppenheimer approximation, we
obtain a potential energy hypersurface for the conformational
motion. Minima on this hypersurface (and specially the global
minimum) are considered as candidates for the optimal phar-
macophore distribution. However, this information lacks the
entropic effects. On the other hand, when interacting with the
receptor site, the conformation of interest is the one correspond-
ing to a minimum of Gibbs energy for the ligand-active site
complex. Therefore, two conclusions can be drawn. First, rather
than using energetic criteria, a thermostatistical point of view
is needed. Second, to account for the possible variation of
conformation when interacting with the receptor, the set of
conformations accessible for a given interaction energy must
be considered. From this point of view, the key point is the
evaluation of a conformational partition function.

The conformational partition function for bioactive com-
pounds is usually obtained from a Boltzmann distribution
involving only the conformational potential energy.1-3 This
technique is rooted on a series of works related to the
determination of the semiclassical conformational partition

function in macromolecules.4-7 From the physical standpoint,
the exclusive use of the conformational potential energy implies
two assumptions. First, the inertial moments remain unchanged
over all the conformational space. Second, the conformational
kinetic energy is also constant. Strictly speaking, these two
assumptions are unjustified for a typical bioactive compound
where the conformational variation is translated in the motion
of large moieties within the molecule.

The computation of a conformational partition function using
approximate molecular models was considered by Go˜ and
Scheraga in ref 7. These authors consider two models. The first
one is the “classical flexible model”. In this case, the confor-
mational potential energy is defined by the minimum potential
energy for fixed (time-averaged) values of the conformational
coordinates. The kinetic energy is handled in Cartesian coor-
dinates. In the semiclassical partition function, the integration
of the momenta (kinetic part) gives a constant term. Integration
of the coordinates (potential part) is carried out in internal
coordinates. However, in this last integration, both the Jacobian
of the Cartesian to internal coordinates transformation and the
force constants for the nonconformational coordinates are
considered constant. The result depends only on the conforma-
tional potential energy. The second model considered in ref 7
is the “classical rigid model”. Here, the potential depends only
on the conformational coordinates for fixed values of the
remaining internal coordinates. The semiclassical partition
function is obtained using internal coordinates, excluding the
nonconformational coordinates and the overall rotation. Integra-
tion of momenta yields a matrix of kinetic terms depending on
the conformational coordinates. Now, the partition function
involves both the conformational kinetic energy matrix and the
conformational potential energy. The detailed comparison
presented in ref 7 shows that both models are approximate, with
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the first (the flexible model) being more realistic and accurate
than the second (the rigid model).

The problem of the construction of a less approximate
molecular model for conformational motions can be tackled
from the standpoint of the theoretical study of large amplitude
vibrations. These vibrations are responsible for the conforma-
tional flexibility. The classical example of such vibrations is
the torsional motion (internal rotation) of methyl groups. These
studies begin by solving the vibrational Schro¨dinger equation
for the anharmonic, large amplitude variation of internal
coordinates.8 Today ab initio methodology is used, and the
potential energy for the considered motion is obtained by
relaxing the molecular geometry for fixed values of the large
amplitude (conformational) coordinates.9 In turn, the kinetic
energy terms are obtained from the elements of the rotovibra-
tional G matrix,10 considering the overall rotation and the
conformational coordinates. These kinetic terms are derived
from the relaxed molecular structures.9 In this form, the
vibrational energy levels are computed. The results show that
the theoretical vibrational energy levels differ from the experi-
mentally observed levels by a few wavenumbers, see for
instance refs 9c and 9d. These studies indicate that the effect
of the variation of the rotovibrational coupling and the confor-
mational kinetic energy is relevant. From the point of view of
the potential, the data show that the potentials obtained by
relaxing the molecular geometries for fixed values of the
conformational coordinates actually represent the potential for
the conformational motion. These potentials are formally very
close, but not identical, to the potential used in the “classic
flexible model” for the computation of the partition function.7

In addition, the reliability of the results depends mainly on the
quality of the potential energy function, see for instance ref 11.

In this work, we revisit the calculation of a conformational
partition function for molecular systems. We consider systems
with the size of usual bioactive compounds, where ab initio
methodology can be applied. Thus, we develop a semiclassical
rotovibrational partition function for a molecule with several
conformational degrees of freedom. The model considers the
overall rotational and the conformational coordinates, with a
fully relaxed potential for fixed conformational coordinates. No
additional restrictions are introduced. Thus, the model includes
the effect of the conformational kinetic energy and the roto-
vibrational coupling. In addition, we analyze the validity of the
semiclassical partition function by comparison with results for
harmonic and large amplitude vibrational models. Finally, the
effect of the conformational kinetic energy and the rotovibra-
tional coupling in the conformational populations of nicotine
and the new nicotinic analgesic ABT-594 is presented.

Theoretical Treatment

We start by considering a molecule withm conformational
degrees of freedom. Using internal coordinates, the semiclassical
partition function for the rotovibrational motions,zrv, is obtained
as12

where H(P,Q) ) T(P) + V(Q) is the classical Hamiltonian
defined in terms of conjugated pairs of momenta,P, and
coordinates,Q, for the overall rotation and conformational
motions. ForN atoms, the kinetic energy,T(P), can be obtained

in velocity representation as8,13

where

In eq 3,V represents the velocity of the center of mass,ω is
the angular velocity,rR is the position vector of theR atom,
and qi are the internal coordinates. By using center of mass
coordinates, matrix notation, and derivingT(V) with respect to
the velocities, we obtain the kinetic energy in terms of momenta8

Here,P is the column matrix of momenta,PT its transpose,
andG is the rotovibrational matrix defined as

In eq 5,I represents the inertial tensor, i.e., the pure rotational
contribution,Y corresponds to the pure vibrational contribution,
andX is the rotation-vibration interaction (Coriolis term). The
elements of these matrices are obtained from the molecular
geometry as

Using eq 4 and the potential energy, the quantum mechanical
Hamiltonian for pure vibrations can be obtained by applying
the Podolsky transformation.14 The expression reads8

where the kinetic termsBij are defined asBij ) p2gij/2, with gij

being the corresponding element of the G matrix. The potential
V(Q) is given in internal coordinates. Equation 7 will be applied
afterward.

Equation 1 is defined in the framework of the Hamilton
formulation of mechanics. Thus, we must work with holonomic
systems,15 in other words, with systems where the generalized
coordinates are independent of each other. However, when using
the ω angular velocity we have a constraint (constantω)
between the components of the velocity, but not between the
coordinates. So, the constraint cannot be expressed as a relation
between the coordinates in the formf(r1, r2,..,rn) ) 0. This is
another way of saying that the coordinates are nonholonomic.15
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Therefore, eq 4 cannot be introduced directly in eq 1. To use
eq 1 we must begin with a holonomic set of overall rotational
coordinates, for instance, the usual Euler angles (θ, φ, ψ).15

Thus, eq 1 becomes

whereTE indicates that the kinetic energy is expressed in terms
of Euler angles. Thus, eq 4 can be introduced in eq 8 using the
principal axis as internal axis. In this form, it is possible to
change the differential of Euler moments to a differential of
angular moments using the Jacobian of the transformation:15

sin(θ). Integrating the Jacobian and substituting eq 4 in eq 8
we obtain

In eq 9, the kinetic energy part, i.e., the G matrix, depends on
the coordinates, and the coordinates considered are reduced to
the conformational ones.

The kinetic energy term can be integrated by reducing the
rotovibrational G matrix to a diagonal form,D, using an
orthogonal transformation,

whereW is the transformation matrix. The matrixD represents
the kinetic matrix in a coordinate system where it is diagonal.
Thus, the effect of theD matrix is to perform a rotation of
coordinates from the principal axis system. The matrix of the
transformation to the new momenta system isW. SinceW is
orthogonal, its determinant (Jacobian of the transformation) is
unity. Therefore,

wheredii are the diagonal elements of theD matrix. Since

we obtain,

where|G(Q)| is the determinant of the G matrix. Equation 13
resembles the semiclassical rotovibrational partition function for
the “classical rigid model” of ref 7. However, here the
rotovibrational coupling is included in the G matrix. The model

is fully flexible, since all the internal coordinates are allowed
to vary when obtaining the potential.

From eq 13, the population of a conformer defined by an
interval ∆Q with limiting values of them conformational
coordinatesQ1 andQ2 is

At this point, it is interesting to analyze the physical nature
of the potential used in eq 13 in relation to the potentials used
in previous molecular models.7 We consider the potential at any
one of the points,a, where the nonconformational coordinates
are fully relaxed. For a molecule ofN atoms andm conforma-
tional coordinates, expanding in Taylor series up to second order
and considering the equilibrium condition respect to the
nonconformational coordinates, we obtain

Equation 15 shows that, for a linear approach, the potential is
exactly a function of them conformational coordinates. The
second, third, and fourth terms exhibit a direct dependence on
the conformational coordinates. The fourth and fifth terms
involve nonconformational internal coordinates. In particular,
the fifth term represents the effect of the nonconformational
force constants. In ref 7 the “flexible model” assumes these force
constants to be independent of the conformational coordinates.
Thus, they emerge from the integral sign. However, the force
constants depend parametrically on the conformational coordi-
nates. Therefore, they should be kept in the integral. By using
a relaxed potential, as defined in this work, we are taking into
account this effect.

Results

Validity of the Semiclassical Approach.Rotational energy
levels are so close at ambient temperature that the semiclassical
approach is a good approximation. On the other hand, for the
usual value of vibrational frequencies (say, in the range 1000-
3000 cm-1), the separation between the energy levels is higher
than the ambientkT factor (about 200 cm-1). Thus, the
semiclassical approach is not applicable. However, the frequen-
cies associated with the conformational motions (large amplitude
vibrations) are low-frequency vibrations. For instance, the
separation between the two first vibrational energy levels is
calculated to be 141.43 and 48.35 cm-1, for the methyl rotation
of acetaldehyde9a and the rotation of the keto groups in
malonaldehyde,9c respectively. In addition, the higher the
molecular moiety experiencing the conformational motion, the
smaller the kinetic B term in the quantum mechanical Hamil-
tonian, eq 7, and the smaller the vibrational frequency. It seems
that for usual bioactive compounds, where the conformational
changes affect groups higher than methyl or keto groups, the
semiclassical approach could be an acceptable approximation.
This assumption needs quantification.

We can get some insight on this problem by using the
harmonic oscillator model at physiological temperature, 37°C
(310.15 K). The quantum mechanical vibrational partition
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function is given by12

where the origin of energies has been taken in the zero of
energies. In turn, the semiclassical vibrational partition function
obtained from eq 16 is given aszv

SC ) (kT - hν0/2)/hν0. The
difference betweenzv

Q andzv
SC can be quantified by defining an

error function,E, (in percent) as

Figure 1 shows the error,E, as a function ofν0 at physiological
temperature. Fundamental frequencies up to 200 cm-1 are
considered. We observe a linear variation of the error in this
range of frequencies. In particular, the error is smaller than 10%
for ν0 e 44 cm-1.

To compare with the previous results, it is necessary to
determine the range of anharmonic frequencies involved in the
conformational motion of bioactive compounds. Thus, we
simulate periodic motions with several periodicities, using
potentials of the form

In eq 18,V0 is half the barrier height,V0 ) H/2, andn is the
periodicity. Periodicities of 1, 2, and 3 are considered. We
consider small (1 kcal mol-1), medium (5 kcal mol-1), and large
(10 kcal mol-1) barriers. As kinetic terms, we consider values
of 1.0, 0.5, and 0.1 cm-1 for theB term, eq 7. TheseB values
correspond to molecular moieties involving several heavy atoms
(compare with the constantB term of 8.918 cm-1 for the methyl
group in acetaldehyde9c or the 2.856 cm-1 for the keto group
in malonaldehyde9e). The vibrational Hamiltonian, eq 7, is
solved variationally in the free rotor basis using the program
NIVELON,16 which implements the methodology developed and
described in refs 8c-8e. For two-fold and three-fold period-
icities, the system can be classified under G2 and G3 nonrigid
groups, isomorphic to the C2 and C3 point groups, respectively.
Thus, the following symmetry adapted basis functions were
employed for each irreducible representation:

with n ) 0, 1, 2, ... A total of 400 basis functions were used to
determine the stack of vibrational energy levels. To compare
with the harmonic oscillator model, the position of the first
vibrational energy level,E0, measured from the bottom of the
potential well, is selected. We consider that this datum defines
a “harmonic” frequency asν0 ) 2E0. Table 1 collects theν0

results of the simulations for the different combinations of
kinetic terms and potential functions.

Table 1 shows thatν0, and then the error for the associated
semiclassical partition function, increases with the periodicity
of the motion, with theB term, and with the potential barrier.
The higherν0 is found forB ) 1.0 cm-1 and a barrier of 10
kcal mol-1 in the three-fold case. The error, eq 17, is 39.2%.
On the other hand, the smallestν0, 5.9 cm-1, appears in the

nonperiodical case forB ) 0.1 cm-1 and for a barrier of 1.0
kcal mol-1. Here, the error amounts to 1.4%. However, the
barriers for conformational variations are usually smaller that
10 kcal mol-1. In addition, the B kinetic terms for motions
involving several heavy atoms are smaller than 1.0 cm-1 (for
instance, a maximum value of 0.27 cm-1 for nicotine). Also,
the periodicity decreases with the complexity of the molecule.
Thus, a realistic average case can be a barrier of 5 kcal mol-1,
for 2-fold or no periodicity, and aB term of 0.1 or 0.5 cm-1.
Table 1 shows that in these conditions and two-fold periodicity,
ν0, amounts to 26.0 and 58.1 cm-1, respectively. Using eq 17,
the respective errors, are 6.0% and 13.2%. In the nonperiodical
case, the corresponding errors are 3.0% and 6.7%. Thus, an error
of a 10% can be used as an upper reference value.

This value can be considered as an upper limit for the
following reasons. First, when considering the stack of energy
levels for a conformational motion, see refs 9c and 9e, a higher
density of states is observed than is found for a harmonic motion
Thus, the energy levels are closer than predicted by the harmonic
model. This effect is translated in a higher number of states
populated at a given temperature and, accordingly, in a smaller
difference between the quantum and semiclassical partition
functions. Second, when analyzing a conformational population
distribution, we are using relative values arising from the same
molecular model. Therefore, the error of the relative measure
can be expected to be smaller than that of the individual data
due to the cancellation of systematic errors. This same effect
has been shown to reduce, in the worst case, almost by 50%
the relative basis set superposition error in a set of several

zv
Q ) exp[-hν0/2kT]/(1 - exp[-hν0/kT]) (16)

E ) 100(zv
Q - zv

SC/zv
Q) (17)

V(θ) ) V0 + V0 cos(nθ) (18)

G2 group

a: cos(2n θ), sin(2n θ)

b: cos((2n ( 1) θ), sin((2n ( 1) θ)

G3 group

a: cos(3n θ), sin(3n θ)

e: cos((3n ( 1) θ), sin((3n ( 1) θ) (19)

Figure 1. Error (in percent) between the quantum and semiclassical
vibrational partition functions for the range of frequencies 1-200 cm-1.
Data at physiological temperature (37°C).

TABLE 1: Fundamental Frequencies of Vibration Obtained
as Twice the Energy, Measured from the Bottom of the
Potential Well, of the First Vibrational Energy Level for
Several Anharmonic Modelsa

B (cm-1) H (kcal mol-1) ν0 (cm-1)b ν0 (cm-1)c ν0 (cm-1)d

1.0 1.0 18.6 36.9 55.0
0.5 1.0 13.2 26.2 39.1
0.1 1.0 5.9 11.8 17.6
1.0 5.0 41.7 82.0 124.4
0.5 5.0 29.5 58.1 88.2
0.1 5.0 13.2 26.0 39.6
1.0 10.0 59.0 117.8 176.4
0.5 10.0 41.8 83.4 124.9
0.1 10.0 18.7 37.4 56.0

a The table includes the kinetic term,B, and the height of the barrier,
H, for the potentials considered.b No periodicity.c Two-fold periodicity.
d Three-fold periodicity.
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molecular complexes of aminopyridines.17 Thus, we can con-
clude that for a typical flexible bioactive compound the
semiclassical approach is able to reproduce the quantum results
with an error smaller than 10%. In fact, the approach is better
the larger the molecular moiety experiencing the variation.

Effect of the Conformational Kinetic Energy and the
Rotovibrational Coupling. To determine the effect of these
two factors we will consider the conformational population
distribution of two molecules in a vacuum. First, the protonated
nicotine will be considered, which is the bioactive form of the
compound. This form exhibits only one conformational degree
of freedom and medium potential energy barriers.18 The second
case corresponds to the nicotinic analgesic ABT-594 in its
protonated, active, form. This is a two-dimensional case where
two conformational coordinates can be defined. In addition, as
shown previously,19 the potential energy barriers are relatively
high, about 40 kJ mol-1.

Figure 2 shows the structure and numbering convention of
nicotine and ABT-594 used in this work. The conformational
coordinates are defined asθ(N12C11C5C4) for the protonated
nicotine andθ1(C13C12O11C5) andθ2(N14C13C12O11) for
the protonated ABT-594. In the structure used for nicotine, the
N-methyl substituent is placed in trans with respect to the
pyridine ring. Previous data18 from molecular mechanics and
from calculations at the MP2/6-31G(d, p)//HF/6-31G(d, p) and
B3LYP/6-31G(d, p)//HF/6-31G(d, p) levels show that this is
the minimum energy arrangement. The molecules are described
at the MP2/cc-pVDZ level using the Gaussian 98 package.20 A
grid of points on each conformational coordinate is generated
in increments of 30° for nicotine, and in increments of 60° for
ABT-594.19 At each point, the molecular structure is fully
relaxed, keeping fixed the conformational coordinates. From
the initial grid, the approximate placements of local minima
are identified. The minima are obtained by fully relaxing the
geometry from the closest point of the grid.

Figure 3 shows the potential energy variation for the two
considered molecules. Figure 3a corresponds to the potential
energy variation for protonated nicotine in a vacuum. Four
minima, I to IV in increasing order of energy, are found. Minima
I-III appear for values of theθ angle of 288.4°, 113.7°, and
218.9°, respectively. Minimum II appears at 0.3 kJ mol-1 of
the global minimum. On the other hand, minimum III appears
at 11.9 kJ mol-1. The last minimum onθ, minimum IV, is
located in the proximity ofθ ) 30°. Full geometry relaxation
from this geometry is unable to find the local minimum, leading
instead to minimum II. However, theθ ) 30° point is placed
15.9 kJ mol-1 from the global minimum. Thus, we can expect
the population of this minimum to be negligible, as shown

below. Therefore, the exact location of this minimum will not
alter the population distribution of conformers. For this reason
we keep the energy value forθ ) 30° as the corresponding to
minimum IV.

The close I and II minima correspond to conformations where
the pyrrolidine and pyridinic rings are approximately perpen-
dicular to each other. These data compare favorably with
previous results for the trans form obtained by molecular
mechanics, ab initio HF/6-31G(d, p) calculations,18 and from
fully relaxed MP2/6-31G(d, p) results.21 This last work identifies
two close minima, A and B (in order of energy) separated by
less than 1.0 kcal mol-1. These minima appear for a torsional
angle, defined as (H17C11C5C6) using the numbering conven-
tion of Figure 2, close to 0° and 180°, respectively. These data
can be compared favorably to the-7.2° and 178.6° values of
the corresponding angle found for our conformers I and II.

Figure 3b shows the potential energy surface for the proto-
nated ABT-594. The global minimum appears forθ1 ) 178.7°,
θ2 ) 43.8° (conformer VIII, following the nomenclature of ref
19), with some additional minima on the hypersurface that are
extensively discussed elsewhere.19 This minimum corresponds
to a conformation where the additional proton on the azetidinyl
group is oriented toward the electron lone pairs of the oxygen,
O11. It has been determined that the same global minimum
appears in aqueous solution.19 The atoms in molecules (AIM)
theory shows that this structure is stabilized by an intramolecular
hydrogen bond between O11 and a hydrogen from one carbon
on the azetidinyl group.19 The minimum closest in energy
appears atθ1 ) 271.2°, θ2 ) 58.2°, and is placed 11.6 kJ mol-1

above the global one. As it can be seen in Figure 3b, this second
minimum almost merges with the first one. The remaining
minima are placed higher in energy.

The failure of the usual assumption of a constant rotovibra-
tional G matrix (in elements and determinant) is shown in Figure
4. Here, we use the two-dimensional case of ABT-594 to
illustrate the dependence on the conformational coordinates of
the rotational partition function (i.e., the individual elements of
the G matrix giving rise to the inertial moments) and the G

Figure 2. Structure and numbering convention of molecules consider-
ing in the work. (a) Protonated nicotine. (b) Protonated ABT-594. The
heteroatoms are indicated in the numbering.

Figure 3. Potential energy maps. (a) Protonated nicotine. (b) Protonated
ABT-594. Interval between isocontour lines 5 kJ mol-1. All data are
referred to the minimum value.

Figure 4. Variation, with the conformation, of the elements of the G
matrix in the nicotinic analgesic ABT-594. (a) Variation of the pure
rotational partition function. Interval between isocontour lines 5%. (b)
Variation of the G matrix determinant. Interval between isocontour lines
30%. All data referred to the minimum value.
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matrix determinant. To obtain these data, the G matrix is
computed for each grid point from the corresponding relaxed
geometry. Figure 4a shows that the minimum value of the
partition function is found for the conformationθ1 ) 300°, θ2

) 60°. The maximum appears forθ1 ) 240°, θ2 ) 180°, with
a difference representing a 28.4% of the minimum value. On
the other hand, Figure 4b shows that the minimum value of the
G matrix determinant appears atθ1 ) 0°, θ2 ) 60°. In this
case the variation is very large. The difference with the
minimum value reaches 215.7% forθ1 ) 240°, θ2 ) 240°.
These results show that for a typical bioactive compound the
elements of the rotovibrational G matrix cannot be considered
constant with the conformation.

The next question is how, and how much, this variation of
the G matrix affects the distribution of conformers. To such an
end, eq 14 and eq 15 are applied to protonated nicotine and
ABT-594 at physiological temperature, 37°C. For each
molecule, we have used the potential energy derived from the
ab initio calculations. As previously, the G matrix determinant
is computed for each grid point from the corresponding relaxed
geometry. The integral in equations 14 and 15 is computed
numerically using a set of bicubic splines in the two-dimensional
case.19,22,23For the one-dimensional case, protonated nicotine,
integration is carried out using the Rombert extrapolation,
applying the trapezoidal rule.23

Figure 5 shows the population distribution of nicotine for
two cases. In the first one (continuous line), we include only
the potential energy, removing the effect of the G matrix
determinant. In the second case (dashed line), we apply
equations (14-15) without approximations. It is shown that only
conformers I and II are significantly populated at physiological
temperature. We observe that the inclusion of the G matrix
changes the population distribution. Table 2 collects the
population of conformers I to IV. The populations are computed
integrating in the intervals determined by the minima arising
in the population distribution. These minima correspond,
approximately, to the intervals, 0°-60°, 60°-180°, 180°-230°,
and 230°-360° for conformers IV, II, III, and I, respectively.
Table 2 shows that the population of conformers III and IV at
physiological temperature can be neglected. On the other hand,
when only the potential energy is used, the population of
conformers I and II are similar and very close to 50%. However,
when the G matrix is included, the population of conformer I
decreases, whereas it increases for conformer II. The result is

that conformer II, the less energetically stable, is the most
populated due to entropic effects.

Figure 6 collects the population distribution of ABT-594 as
a function ofθ1 andθ2. The population distribution, including
the effects of the G matrix and the potential energy, is shown
in the lower diagram. We observe that the conformer VIII
(global minimum) is almost exclusively populated. The main
difference of this case with respect to the protonated nicotine
is the higher energy difference between the minima on the
potential energy hypersurface, see Figure 3. In particular, no
minimum is closer than 11.6 kJ mol-1 to the global minimum.

The results obtained by the exclusive use of the potential
energy yields a distribution almost indistinguishable from the
previous results. To display the difference between the two
cases, we compute the difference between the map that includes
both effects (G matrix and potential energy) and the map
obtained from the potential energy. The result is shown in the
upper part of Figure 6. We observe small differences for the
minor conformers identified as I, II, and V, using again the
nomenclature of ref 19. In particular, when we introduce the G
matrix, conformer I is more populated, whereas conformers II
and V decrease in population. On the other hand, for the most
populated conformer, conformer VIII, the difference is positive
and negative around the zone. However, all the differences are
in the range-3.0× 10-5 to 3.0× 10-5, which are low values
(the base value in the population map shown in the lower part
of Figure 6 is 10-6 to 10-7 ). To quantify the effect of the
inclusion of the G matrix in the population calculations, we

Figure 5. Conformational population for protonated nicotine. The
dashed line corresponds to the population evaluated including the G
matrix. The continuous line corresponds to the population evaluated
using only the potential energy. Data at physiological temperature (37
°C).

TABLE 2: Population (in percent) for the Conformers of
Protonated Nicotine and ABT-594 When the G Matrix Is
Considereda

V GV

conformer I nicotine 49.04 45.91
conformer II nicotine 50.37 53.76
conformer III nicotine 0.46 0.26
conformer IV nicotine 0.13 0.07
conformer VIII ABT-594 97.8 98.7

a Columns with V correspond to populations obtained using only
the potential energy. Columns with GV indicate that the populations
are computed using the potential energy and the G matrix determinant.
Data at physiological temperature (37°C).

Figure 6. Conformational population for protonated ABT-594. The
lower surface corresponds to the population evaluated including the G
matrix. The upper surface corresponds to the difference between
populations evaluated including and excluding the G matrix. Data at
physiological temperature (37°C).
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compute the population of conformer VIII obtained including
and excluding the G matrix. Since the base value of population
in the population maps is 10-6 to 10-7, we select as limits of
integration for the peak the zone delimited by a population value
of at least 10-6. The results are collected in Table 2. We observe
that including the G matrix, the population of conformer VIII
changes only slightly from 97.8% to 98.7%.

The previous results show that the net effect of the G matrix
depends on the difference in energy between the conformers.
To quantify this effect, we compute the population variation
for increasing energy differences between conformers. Thus,
we simulate a one-dimensional potential with two minima,
similar to the potential for nicotine shown in Figure 3a. The
potential is defined as

This potential exhibits two minima atθ values of 90° and 270°.
The minimum at 270° is the global one. The interconversion
barrier is fixed at 20 kJ mol-1. Figure 7 shows the physical
meaning of thea andb parameters of eq 20. As G matrix values
we have used the data obtained in the conformational analysis
of nicotine. We have tested differences in energy between the
conformers from 0.0 to 10.0 kJ mol-1 in increments of 2.0 kJ
mol-1. Table 3 shows the variation of population for increasing
differences in energy between the conformers. In all cases, when
the G matrix is included, conformer I decreases in population,
whereas conformer II increases. Also, we observe that as∆E
increases the effect of the G matrix decreases. The absolute value
of the population variation goes from 26.3% for∆E ) 0.0 kJ
mol-1 to 1.0% for ∆E ) 10.0 kJ mol-1. In particular, the
variation falls under 5% for∆E ) 8.0 kJ mol-1 (about 2 kcal
mol-1). In fact, for this∆E the variation reaches 2.5%. Thus, a
difference of 2 kcal mol-1 between conformers can be taken as
a practical limit for the potential energy to become the leading
factor in the conformational population.

It is important to recall that the exclusive use of the potential
energy is based on the assumption of the classical flexible
model.7 Thus, to be consistent with the model, the nonconfor-
mational coordinates should be fixed at some time-averaged
values. Therefore, it is not physically consistent to compute the
conformational partition function from a Boltzmann distribution
involving only a relaxed potential. If a relaxed potential is used,
eq 13 for the conformational partition function must be applied.
Only when the difference between conformers is higher than
about 2.0 kcal mol-1 can the effect of the G matrix be neglected.
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D. C. J. Phys. Chem. 1995, 99, 8510-8515. (e) Niño, A.; Muñoz-Caro, C.
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(17) Muñoz-Caro, C.; Nin˜o, A. Biophys. Chem. 2002, 96, 1-14.
(18) Elmore, D. E.; Dougherty, D. A.J. Org. Chem. 2000, 65, 742-

747.
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