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Conformational Population of Bioactive Compounds

A. Nifo,* C. Mufioz-Caro, M. Mora, and S. Reyes

Grupo de Qimica Computacional, E. S. Inforriea, Universidad de Castilla-La Mancha,
Paseo de la Uniersidad 4, 13071, Ciudad Real (Spain)

Receied: August 21, 2003; In Final Form: October 2, 2003

This work presents the determination of a semiclassical conformational partition function for bioactive
compounds. The proposed partition function includes the effect of the rotovibrational coupling and the
conformational kinetic energy, through the rotovibrational G matrix. In addition, the model considers a relaxed
potential that includes the effect of the nonconformational, internal, coordinates. Comparison of results from
harmonic and anharmonic vibrational models shows that the present partition function is a good approximation
to the quantum one. The effect of the rotovibrational coupling and conformational kinetic energy, i.e. the G
matrix, on the partition function is analyzed considering the biologically active, protonated, forms of nicotine
and the nicotinic analgesic ABT-594. All energetic and structural data are derived from ab initio results at
the MP2/cc-pVDZ level. Only two conformers are found to be significantly populated at physiological
temperature in the nicotine case. The relative population of both conformers is clearly affected by the value
of the G matrix. For ABT-594, several minima on the conformational potential energy hypersurface are found.
However, only one conformer collects the population. Here, the distribution of population is only slightly
affected by the G matrix. Performing simulations with a double minima potential, we show that for conformers

separated by energy differences about or higher than 2 kcalntioé effect of the G matrix can be neglected.

Introduction function in macromolecules.” From the physical standpoint,
the exclusive use of the conformational potential energy implies
two assumptions. First, the inertial moments remain unchanged
over all the conformational space. Second, the conformational
kinetic energy is also constant. Strictly speaking, these two
assumptions are unjustified for a typical bioactive compound
where the conformational variation is translated in the motion
of large moieties within the molecule.

The computation of a conformational partition function using
approximate molecular models was considered By &bd

Conformational flexibility is an important factor to take into
account when modeling the activity of bioactive compounds.
In particular, the three-dimensional arrangement of pharma-
cophoric groups is a function of the conformational coordinates.
To adopt the optimal disposition for interaction with the
receptor’'s active site, the conformational coordinates of the
bioactive agent must change accordingly.

Usually, the conformational problem is tackled from a
conformational analysis on the considered coordinates. Thus, . . .
on the grounds of the BorROppenheimer approximation, we Schgraga II"‘I ref 7.. These_authors cc,>’n3|der.two models. The first
obtain a potential energy hypersurface for the conformational "€ 'S the clas§|cal erxHo]e quel - In this case, the Confc?f'
motion. Minima on this hypersurface (and specially the global Mational potential energy is defined by the minimum potential
minimum) are considered as candidates for the optimal phar- €N€rdy for fixed (time-averaged) values of the conformational
macophore distribution. However, this information lacks the Ccoordinates. The kinetic energy is handled in Cartesian coor-
entropic effects. On the other hand, when interacting with the dinates. In the semmlgssmal p.artmon function, the |ntegrat|pn
receptor site, the conformation of interest is the one correspond-Of the momenta (kinetic par_t) gives a constant term._lnt_egratlon
ing to a minimum of Gibbs energy for the ligand-active site of the coordinates (potential part) is carried out in internal

complex. Therefore, two conclusions can be drawn. First rathercoordinates. However, in this last integration, both the Jacobian
than using energeti,c criteria, a thermostatistical point o'f view of the Cartesian to internal coordinates transformation and the

is needed. Second, to account for the possible variation of force constants for the nonconformational coordinates are
conformation when interacting with the receptor, the set of considered constant. The result depends only on the conforma-
conformations accessible for a given interaction energy must tional potential energy. The second model considered in ref 7
be considered. From this point of view, the key point is the 'S the “classical r|g_|d mode”. Here, the pot_ent|al depends only
evaluation of a conformational partition function. on the conformational coordinates for fixed values of the
The conformational partition function for bioactive com- remaining internal coordinates. The semiclassical partition
pounds is usually obtained from a Boltzmann distribution function is obtained using internal coordinates, excluding the
involving only the conformational potential energ This nonconformational coordinates and the overall rotation. Integra-

technique is rooted on a series of works related to the tion of momenta yieldsamatrix of kinetic terms c_i(_apending_on
determination of the semiclassical conformational partition the conformational coordinates. Now, the partition function
involves both the conformational kinetic energy matrix and the
* Corresponding author. E-mail: quimcom@ucim.es, Tel-+34)- conformational potential energy. The detailed comparison

926295362, Fax: 34)926295354. presented in ref 7 shows that both models are approximate, with
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the first (the flexible model) being more realistic and accurate
than the second (the rigid model).

The problem of the construction of a less approximate
molecular model for conformational motions can be tackled
from the standpoint of the theoretical study of large amplitude

vibrations. These vibrations are responsible for the conforma- where

tional flexibility. The classical example of such vibrations is
the torsional motion (internal rotation) of methyl groups. These
studies begin by solving the vibrational Schirnger equation

for the anharmonic, large amplitude variation of internal
coordinates. Today ab initio methodology is used, and the
potential energy for the considered motion is obtained by
relaxing the molecular geometry for fixed values of the large
amplitude (conformational) coordinat&sn turn, the kinetic

energy terms are obtained from the elements of the rotovibra-

tional G matrix!® considering the overall rotation and the

conformational coordinates. These kinetic terms are derived

from the relaxed molecular structurgdn this form, the

vibrational energy levels are computed. The results show that

the theoretical vibrational energy levels differ from the experi-

Nifio et al.
in velocity representation &&
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T(V) 25 Z mava'va (2)
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In eq 3,V represents the velocity of the center of masss
the angular velocityr, is the position vector of thet atom,
and g; are the internal coordinates. By using center of mass
coordinates, matrix notation, and derivili¢v) with respect to
the velocities, we obtain the kinetic energy in terms of monfenta
PT GP

T(P) = (4)

Here,P is the column matrix of moment® its transpose,

mentally observed levels by a few wavenumbers, see for andG is the rotovibrational matrix defined as
instance refs 9c and 9d. These studies indicate that the effect

of the variation of the rotovibrational coupling and the confor-
mational kinetic energy is relevant. From the point of view of

the potential, the data show that the potentials obtained by

relaxing the molecular geometries for fixed values of the

conformational coordinates actually represent the potential for

the conformational motion. These potentials are formally very
close, but not identical, to the potential used in the “classic
flexible model” for the computation of the partition functién.

In addition, the reliability of the results depends mainly on the
quality of the potential energy function, see for instance ref 11.
In this work, we revisit the calculation of a conformational
partition function for molecular systems. We consider systems
with the size of usual bioactive compounds, where ab initio

methodology can be applied. Thus, we develop a semiclassical

rotovibrational partition function for a molecule with several

conformational degrees of freedom. The model considers the

overall rotational and the conformational coordinates, with a
fully relaxed potential for fixed conformational coordinates. No

additional restrictions are introduced. Thus, the model includes

the effect of the conformational kinetic energy and the roto-
vibrational coupling. In addition, we analyze the validity of the
semiclassical partition function by comparison with results for
harmonic and large amplitude vibrational models. Finally, the
effect of the conformational kinetic energy and the rotovibra-
tional coupling in the conformational populations of nicotine
and the new nicotinic analgesic ABT-594 is presented.

Theoretical Treatment

We start by considering a molecule with conformational

G= I X |t
=y v
In eq 5,I represents the inertial tensor, i.e., the pure rotational
contribution,Y corresponds to the pure vibrational contribution,
andX is the rotation-vibration interaction (Coriolis term). The

elements of these matrices are obtained from the molecular
geometry as

®)

_2 My r il g
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Using eq 4 and the potential energy, the quantum mechanical
Hamiltonian for pure vibrations can be obtained by applying
the Podolsky transformatio. The expression reatls

n noom 82 9B\ 9
A=-SS|B—+|—|-[+v@ O

T 8q|8q] aq; | oq;
where the kinetic termB;; are defined a8 = h2g;/2, with g

degrees of freedom. Using internal coordinates, the semiclassicabeing the corresponding element of the G matrix. The potential

partition function for the rotovibrational motiorg,, is obtained
ag?

m+3
z,=h" ™ [0 [, exp[-H(P.Q/KT] [ dp dp, (1)

where H(P,Q) = T(P) + V(Q) is the classical Hamiltonian
defined in terms of conjugated pairs of momenB, and

coordinates,Q, for the overall rotation and conformational
motions. FoN atoms, the kinetic energy{P), can be obtained

V(Q) is given in internal coordinates. Equation 7 will be applied
afterward.

Equation 1 is defined in the framework of the Hamilton
formulation of mechanics. Thus, we must work with holonomic
systems? in other words, with systems where the generalized
coordinates are independent of each other. However, when using
the w angular velocity we have a constraint (constasjt
between the components of the velocity, but not between the
coordinates. So, the constraint cannot be expressed as a relation
between the coordinates in the fofffn;, ry,..rn) = 0. This is
another way of saying that the coordinates are nonholon&mic.
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Therefore, eq 4 cannot be introduced directly in eq 1. To use
eg 1 we must begin with a holonomic set of overall rotational
coordinates, for instance, the usual Euler angtgse( v).1°
Thus, eq 1 becomes

2, =h"™3 [0 [ expl-Te(P)KT] x

m+3

exp[-V(Q)/KT] dP, d6 dP, dp dP,, dy | | dp; dg; (8)

whereTg indicates that the kinetic energy is expressed in terms
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is fully flexible, since all the internal coordinates are allowed
to vary when obtaining the potential.

From eq 13, the population of a conformer defined by an
interval AQ with limiting values of them conformational
coordinate; andQ is

PIAQ) = [ [ 1G(Q)I ¥ exp[-V(Q/KT] [] daliz, (14)

At this point, it is interesting to analyze the physical nature
of the potential used in eq 13 in relation to the potentials used

of Euler angles. Thus, eq 4 can be introduced in eq 8 using thej, previous molecular modelawe consider the potential at any

principal axis as internal axis. In this form, it is possible to

change the differential of Euler moments to a differential of
angular moments using the Jacobian of the transformation:

sin(@). Integrating the Jacobian and substituting eq 4 in eq 8
we obtain

m+3

z, = 8z°h™ (™3 fQ J, exp[=P'GP/2kT] [ dp; x

m+3

exp[~V(Q)/KT]| | da; (9)

In eq 9, the kinetic energy part, i.e., the G matrix, depends on

one of the pointsa, where the nonconformational coordinates
are fully relaxed. For a molecule &f atoms andn conforma-
tional coordinates, expanding in Taylor series up to second order
and considering the equilibrium condition respect to the
nonconformational coordinates, we obtain

U Y, 1mm [ v
V,=Vo+ Yy |—| Aq += ( )Aq-Aq+
a0 Zaqia I Zija%aqia o
m 3N-6 32V 1 3N-6 3N-6 azv
AQAQ + — AgAQg,
,z j:;»j_ Bq, Bq] a C 2 izg'rlj:;l (3(1. aq] a o
(15)

the coordinates, and the coordinates considered are reduced to

the conformational ones.

The kinetic energy term can be integrated by reducing the
rotovibrational G matrix to a diagonal fornD), using an
orthogonal transformation,

D=W'GW (10)
whereW is the transformation matrix. The matiixrepresents
the kinetic matrix in a coordinate system where it is diagonal.
Thus, the effect of thd matrix is to perform a rotation of
coordinates from the principal axis system. The matrix of the
transformation to the new momenta systenWs SinceW is
orthogonal, its determinant (Jacobian of the transformation) is
unity. Therefore,

m3
z, = 8zh ™ [ |‘| [/, expl- di/2KT] dp] x
m+3

exp[~V(Q)/KT] | | dg; (11)

whered; are the diagonal elements of tBematrix. Since

S +: expax) dx = (n/a)*? (12)

we obtain,

27K T\(m+3)12 -
zrv=8n2(—h;) Jo|GQI ™ x
m+3

exp[~V(Q)/KT] | | dg; (13)

where|G(Q)| is the determinant of the G matrix. Equation 13
resembles the semiclassical rotovibrational partition function for
the “classical rigid model” of ref 7. However, here the
rotovibrational coupling is included in the G matrix. The model

Equation 15 shows that, for a linear approach, the potential is
exactly a function of them conformational coordinates. The
second, third, and fourth terms exhibit a direct dependence on
the conformational coordinates. The fourth and fifth terms
involve nonconformational internal coordinates. In particular,
the fifth term represents the effect of the nonconformational
force constants. In ref 7 the “flexible model” assumes these force
constants to be independent of the conformational coordinates.
Thus, they emerge from the integral sign. However, the force
constants depend parametrically on the conformational coordi-
nates. Therefore, they should be kept in the integral. By using
a relaxed potential, as defined in this work, we are taking into
account this effect.

Results

Validity of the Semiclassical Approach.Rotational energy
levels are so close at ambient temperature that the semiclassical
approach is a good approximation. On the other hand, for the
usual value of vibrational frequencies (say, in the range 000
3000 cntY), the separation between the energy levels is higher
than the ambienkT factor (about 200 cmi). Thus, the
semiclassical approach is not applicable. However, the frequen-
cies associated with the conformational motions (large amplitude
vibrations) are low-frequency vibrations. For instance, the
separation between the two first vibrational energy levels is
calculated to be 141.43 and 48.35Tyfor the methyl rotation
of acetaldehyd® and the rotation of the keto groups in
malonaldehyd& respectively. In addition, the higher the
molecular moiety experiencing the conformational motion, the
smaller the kinetic B term in the quantum mechanical Hamil-
tonian, eq 7, and the smaller the vibrational frequency. It seems
that for usual bioactive compounds, where the conformational
changes affect groups higher than methyl or keto groups, the
semiclassical approach could be an acceptable approximation.
This assumption needs quantification.

We can get some insight on this problem by using the
harmonic oscillator model at physiological temperature;G7
(310.15 K). The quantum mechanical vibrational partition
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function is given by?

20 = exp[—hy/2kT/(1 — exp[—hv/KT])

where the origin of energies has been taken in the zero of
energies. In turn, the semiclassical vibrational partition function
obtained from eq 16 is given & = (kT — hvy/2)lhw,. The
difference betweer? andZ° can be quantified by defining an
error function,E, (in percent) as

E=100L2 — 292

Figure 1 shows the erroE, as a function of at physiological
temperature. Fundamental frequencies up to 200'care
considered. We observe a linear variation of the error in this
range of frequencies. In particular, the error is smaller than 10%
for vo < 44 cnm'L.

To compare with the previous results, it is necessary to
determine the range of anharmonic frequencies involved in the
conformational motion of bioactive compounds. Thus, we
simulate periodic motions with several periodicities, using
potentials of the form

V(0) =V, + V, cosfe)

(16)

(17)

(18)

In eq 18,V is half the barrier heightyp = H/2, andn is the
periodicity. Periodicities of 1, 2, and 3 are considered. We
consider small (1 kcal mot), medium (5 kcal mol?), and large
(10 kcal mot?t) barriers. As kinetic terms, we consider values
of 1.0, 0.5, and 0.1 cni for the B term, eq 7. ThesB values
correspond to molecular moieties involving several heavy atoms
(compare with the constaBtterm of 8.918 cm? for the methyl
group in acetaldehyd&or the 2.856 cm! for the keto group

in malonaldehyd¥®). The vibrational Hamiltonian, eq 7, is
solved variationally in the free rotor basis using the program
NIVELON,*® which implements the methodology developed and
described in refs 8e8e. For two-fold and three-fold period-
icities, the system can be classified underadd G nonrigid
groups, isomorphic to the @nd G point groups, respectively.
Thus, the following symmetry adapted basis functions were
employed for each irreducible representation:

G, group
a: cos(d 6), sin(2h 9)
b: cos((hh+1)6),sin((zn+1)06)
G; group
a cos(3 ), sin(n v)
e cos((h=£1)h),sin((h+1)6) (29)

withn =0, 1, 2, ... A total of 400 basis functions were used to
determine the stack of vibrational energy levels. To compare
with the harmonic oscillator model, the position of the first
vibrational energy levelE,, measured from the bottom of the
potential well, is selected. We consider that this datum defines
a “harmonic” frequency asy = 2E,. Table 1 collects theq
results of the simulations for the different combinations of
kinetic terms and potential functions.

Table 1 shows thaty, and then the error for the associated
semiclassical partition function, increases with the periodicity
of the motion, with theB term, and with the potential barrier.
The highervg is found forB = 1.0 cnt! and a barrier of 10
kcal mol! in the three-fold case. The error, eq 17, is 39.2%.
On the other hand, the smalless, 5.9 cnT?, appears in the

Nifio et al.
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Figure 1. Error (in percent) between the quantum and semiclassical
vibrational partition functions for the range of frequencie200 cnt.
Data at physiological temperature (32).

TABLE 1: Fundamental Frequencies of Vibration Obtained
as Twice the Energy, Measured from the Bottom of the
Potential Well, of the First Vibrational Energy Level for
Several Anharmonic Model$

B(cm™) H(kcalmoll) wvo(cm™b?  vo(cm ) vo(cmL)d
1.0 1.0 18.6 36.9 55.0
0.5 1.0 13.2 26.2 39.1
0.1 1.0 5.9 11.8 17.6
1.0 5.0 41.7 82.0 124.4
0.5 5.0 29.5 58.1 88.2
0.1 5.0 13.2 26.0 39.6
1.0 10.0 59.0 117.8 176.4

5 10.0 41.8 834 124.9
0.1 10.0 18.7 374 56.0

2 The table includes the kinetic terf, and the height of the barrier,
H, for the potentials consideretiNo periodicity.¢ Two-fold periodicity.
dThree-fold periodicity.

nonperiodical case foB = 0.1 cnt! and for a barrier of 1.0
kcal moll. Here, the error amounts to 1.4%. However, the
barriers for conformational variations are usually smaller that
10 kcal mot. In addition, the B kinetic terms for motions
involving several heavy atoms are smaller than 1.0 c(for
instance, a maximum value of 0.27 chfor nicotine). Also,

the periodicity decreases with the complexity of the molecule.
Thus, a realistic average case can be a barrier of 5 kcal'mol
for 2-fold or no periodicity, and & term of 0.1 or 0.5 cmZ.
Table 1 shows that in these conditions and two-fold periodicity,
vo, amounts to 26.0 and 58.1 ci respectively. Using eq 17,
the respective errors, are 6.0% and 13.2%. In the nonperiodical
case, the corresponding errors are 3.0% and 6.7%. Thus, an error
of a 10% can be used as an upper reference value.

This value can be considered as an upper limit for the
following reasons. First, when considering the stack of energy
levels for a conformational motion, see refs 9¢c and 9e, a higher
density of states is observed than is found for a harmonic motion
Thus, the energy levels are closer than predicted by the harmonic
model. This effect is translated in a higher number of states
populated at a given temperature and, accordingly, in a smaller
difference between the quantum and semiclassical partition
functions. Second, when analyzing a conformational population
distribution, we are using relative values arising from the same
molecular model. Therefore, the error of the relative measure
can be expected to be smaller than that of the individual data
due to the cancellation of systematic errors. This same effect
has been shown to reduce, in the worst case, almost by 50%
the relative basis set superposition error in a set of several
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Figure 3. Potential energy maps. (a) Protonated nicotine. (b) Protonated
ABT-594. Interval between isocontour lines 5 kJ molAll data are
referred to the minimum value.

Figure 2. Structure and numbering convention of molecules consider- e
ing in the work. (a) Protonated nicotine. (b) Protonated ABT-594. The = =,

LY

heteroatoms are indicated in the numbering. Nji

molecular complexes of aminopyridin€sThus, we can con- S

clude that for a typical flexible bioactive compound the

semiclassical approach is able to reproduce the quantum result:

with an error smaller than 10%. In fact, the approach is better

the larger the molecular moiety experiencing the variation. . o ) )
Effect of the Conformational Kinetic Energy and the Figure 4. Variation, with the conformation, of the elements of the G

. . . . matrix in the nicotinic analgesic ABT-594. (a) Variation of the pure
Rotovibrational Coupling. To determine the effect of these rotational partition function. Interval between isocontour lines 5%. (b)

tV_VO _faCt_Ol‘S we will ConSidef the conforma_ltional population \ariation of the G matrix determinant. Interval between isocontour lines
distribution of two molecules in a vacuum. First, the protonated 30%. All data referred to the minimum value.

nicotine will be considered, which is the bioactive form of the
compound. This form exhibits only one conformational degree below. Therefore, the exact location of this minimum will not
of freedom and medium potential energy barriérghe second alter the population distribution of conformers. For this reason
case corresponds to the nicotinic analgesic ABT-594 in its we keep the energy value fér= 30° as the corresponding to
protonated, active, form. This is a two-dimensional case where minimum 1V.
two conformational coordinates can be defined. In addition, as  The close | and Il minima correspond to conformations where
shown previously? the potential energy barriers are relatively the pyrrolidine and pyridinic rings are approximately perpen-
high, about 40 kJ mot. dicular to each other. These data compare favorably with
Figure 2 shows the structure and numbering convention of previous results for the trans form obtained by molecular
nicotine and ABT-594 used in this work. The conformational mechanics, ab initio HF/6-31G(d, p) calculatid8sand from
coordinates are defined 8§N12C11C5C4) for the protonated  fully relaxed MP2/6-31G(d, p) result$This last work identifies
nicotine andf1(C13C12011C5) and@»(N14C13C12011) for two close minima, A and B (in order of energy) separated by
the protonated ABT-594. In the structure used for nicotine, the less than 1.0 kcal mot. These minima appear for a torsional
N-methyl substituent is placed in trans with respect to the angle, defined as (H17C11C5C6) using the numbering conven
pyridine ring. Previous dat&from molecular mechanics and tion of Figure 2, close toOand 180, respectively. These data
from calculations at the MP2/6-31G(d, p)//HF/6-31G(d, p) and can be compared favorably to th€7.2°> and 178.8 values of
B3LYP/6-31G(d, p)//HF/6-31G(d, p) levels show that this is the corresponding angle found for our conformers | and .
the minimum energy arrangement. The molecules are described Figure 3b shows the potential energy surface for the proto-
at the MP2/cc-pVDZ level using the Gaussian 98 packéde. nated ABT-594. The global minimum appears far= 178.7,
grid of points on each conformational coordinate is generated 6, = 43.8° (conformer VIII, following the nomenclature of ref
in increments of 30for nicotine, and in increments of 6@r 19), with some additional minima on the hypersurface that are
ABT-5941° At each point, the molecular structure is fully extensively discussed elsewhéf& his minimum corresponds
relaxed, keeping fixed the conformational coordinates. From to a conformation where the additional proton on the azetidinyl
the initial grid, the approximate placements of local minima group is oriented toward the electron lone pairs of the oxygen,
are identified. The minima are obtained by fully relaxing the 0O11. It has been determined that the same global minimum
geometry from the closest point of the grid. appears in agueous solutihThe atoms in molecules (AIM)
Figure 3 shows the potential energy variation for the two theory shows that this structure is stabilized by an intramolecular
considered molecules. Figure 3a corresponds to the potentialhydrogen bond between O11 and a hydrogen from one carbon
energy variation for protonated nicotine in a vacuum. Four on the azetidinyl group? The minimum closest in energy
minima, | to IV in increasing order of energy, are found. Minima appears af; = 271.2, 6, = 58.2, and is placed 11.6 kJ mdi

a) b)

-1l appear for values of thé angle of 288.4, 113.7, and above the global one. As it can be seen in Figure 3b, this second
218.9, respectively. Minimum 1l appears at 0.3 kJ mbbf minimum almost merges with the first one. The remaining
the global minimum. On the other hand, minimum Il appears minima are placed higher in energy.

at 11.9 kJ motl. The last minimum org, minimum 1V, is The failure of the usual assumption of a constant rotovibra-

located in the proximity of) = 30°. Full geometry relaxation  tional G matrix (in elements and determinant) is shown in Figure
from this geometry is unable to find the local minimum, leading 4. Here, we use the two-dimensional case of ABT-594 to
instead to minimum Il. However, theé = 30° point is placed illustrate the dependence on the conformational coordinates of
15.9 kJ mot? from the global minimum. Thus, we can expect the rotational partition function (i.e., the individual elements of
the population of this minimum to be negligible, as shown the G matrix giving rise to the inertial moments) and the G
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Population TABLE 2: Population (in percent) for the Conformers of

0.020 — Protonated Nicotine and ABT-594 When the G Matrix Is
] I Considered

0.016 — 4 \Y GV
] '§ conformer | nicotine 49.04 45.91

0.012 H conformer Il nicotine 50.37 53.76
- i conformer Il nicotine 0.46 0.26

0.008 — i conformer IV nicotine 0.13 0.07
| | conformer VIII ABT-594 97.8 98.7

0.004 — "'. a Columns with V correspond to populations obtained using only
_ \ the potential energy. Columns with GV indicate that the populations

0.000 T are computed using the potential energy and the G matrix determinant.
0 60 120 180 240 300 360 Data at physiological temperature (3C).

O (degrees)
Figure 5. Conformational population for protonated nicotine. The ’“‘% I

dashed line corresponds to the population evaluated including the G
matrix. The continuous line corresponds to the population evaluated p(av)-P(v)
using only the potential energy. Data at physiological temperature (37 "
°C).

matrix determinant. To obtain these data, the G matrix is
computed for each grid point from the corresponding relaxed
geometry. Figure 4a shows that the minimum value of the
partition function is found for the conformatiagh = 300, 0,

= 60°. The maximum appears féh = 240°, 6, = 18C°, with

a difference representing a 28.4% of the minimum value. On
the other hand, Figure 4b shows that the minimum value of the
G matrix determinant appears éf = 0°, 6, = 60°. In this
case the variation is very large. The difference with the
minimum value reaches 215.7% fé; = 240°, 6, = 240C°. :
These results show that for a typical bioactive compound the 0,

elements of the rotovibrational G matrix cannot be considered Figure 6. Conformational population for protonated ABT-594. The

constant with the _con.formatlon. _ o lower surface corresponds to the population evaluated including the G
The next question is how, and how much, this variation of matrix. The upper surface corresponds to the difference between

the G matrix affects the distribution of conformers. To such an populations evaluated including and excluding the G matrix. Data at
end, eq 14 and eq 15 are applied to protonated nicotine andPhysiological temperature (37).

ABT-594 at physiological temperature, 37C. For each
molecule, we have used the potential energy derived from the
ab initio calculations. As previously, the G matrix determinant

is computed for each grid point from the corresponding relaxed a function of¢; andf. The population distribution, including

geomgtry. Th‘? integral |n.equ.at|or!s 14 and 15 IS computed the effects of the G matrix and the potential energy, is shown
numerically using a set of bicubic splines in the two-dimensional .

casel92223For the one-dimensional case, protonated nicotine, |- the lower diagram. We observe that the conformer Vill
integ.ration is carried out using the Ro'mbert extrapolation' (global m|n|mur_n) 'S almqst exclusively populated. The_ma_ln
apolving the trapezoidal rukd ’ Q|ﬁerenge of this case wlth respect to the proton.a'ged nicotine
pp.y 9 P o o o is the higher energy difference between the minima on the
Figure 5 shows the population distribution of nicotine for potential energy hypersurface, see Figure 3. In particular, no
two cases. In the first one (continuous line), we include only minimum is closer than 11.6 kJ mdlto the global minimum.
the potential energy, removing the effect of the G matrix  The results obtained by the exclusive use of the potential
determinant. In the second case (dashed line), we applyenergy yields a distribution almost indistinguishable from the
equations (14 15) without approximations. Itis shown thatonly  previous results. To display the difference between the two
conformers I and Il are significantly populated at physiological cases, we compute the difference between the map that includes
temperature. We observe that the inclusion of the G matrix poth effects (G matrix and potential energy) and the map
changes the population distribution. Table 2 collects the gbtained from the potential energy. The result is shown in the
population of conformers I to IV. The populations are computed upper part of Figure 6. We observe small differences for the
integrating in the intervals determined by the minima arising minor conformers identified as I, Il, and V, using again the
in the population distribution. These minima correspond, nomenclature of ref 19. In particular, when we introduce the G
approximately, to the intervals;©60°, 60°—18C°, 180°—23(, matrix, conformer | is more populated, whereas conformers ||
and 230—360 for conformers IV, II, lll, and |, respectively.  and V decrease in population. On the other hand, for the most
Table 2 shows that the population of conformers Il and IV at populated conformer, conformer VIII, the difference is positive
physiological temperature can be neglected. On the other handand negative around the zone. However, all the differences are
when only the potential energy is used, the population of inthe range-3.0 x 107>to 3.0 x 1075, which are low values
conformers | and Il are similar and very close to 50%. However, (the base value in the population map shown in the lower part
when the G matrix is included, the population of conformer | of Figure 6 is 10° to 1077 ). To quantify the effect of the
decreases, whereas it increases for conformer II. The result isinclusion of the G matrix in the population calculations, we

P(GV)

that conformer I, the less energetically stable, is the most
populated due to entropic effects.
Figure 6 collects the population distribution of ABT-594 as
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TABLE 3: Simulated Population (in %) of Conformers | and Il of trans Nicotine, at Physiological Temperature (37 °C), as a

Function of the Potential Energy Difference AE) between Then?

AE = 0.0 kJ mot? AE = 2.0 kJ mot? AE = 4.0 kJ mot?

AE = 6.0 kJ mof? AE = 8.0 kJ mot? AE = 10.0 kJ mof?

\Y GV \% GV \% GV \% GV \Y GV \% GV
I 50.1 36.9 67.8 55.6 81.4 72.9 90.0 85.3 94.9 92.5 97.4 96.4
I 49.9 63.1 32.2 44.4 18.6 27.1 10.0 14.7 5.1 7.5 2.6 3.6

a Columns with V correspond to populations obtained using only the p
using the potential energy and the G matrix determinant.

V = (a+b)+ a-cos(20)- b-cos (90+0)
kJ/mol
20

16 —

12 —

2a+b

v

120 180 240 300 360
0 (degrees)
Figure 7. Model potential used to determine the effect of increasing

energy differences between conformers.

compute the population of conformer VIII obtained including
and excluding the G matrix. Since the base value of population
in the population maps is 10to 1077, we select as limits of
integration for the peak the zone delimited by a population value
of at least 10°. The results are collected in Table 2. We observe
that including the G matrix, the population of conformer VIII
changes only slightly from 97.8% to 98.7%.

The previous results show that the net effect of the G matrix
depends on the difference in energy between the conformers.
To quantify this effect, we compute the population variation
for increasing energy differences between conformers. Thus,
we simulate a one-dimensional potential with two minima,
similar to the potential for nicotine shown in Figure 3a. The
potential is defined as

V(0) = (a+ b) + acos(d) — bcos(90+ 6) (20)
This potential exhibits two minima #&values of 90 and 270.
The minimum at 270is the global one. The interconversion
barrier is fixed at 20 kJ mot. Figure 7 shows the physical
meaning of the andb parameters of eq 20. As G matrix values
we have used the data obtained in the conformational analysis
of nicotine. We have tested differences in energy between the
conformers from 0.0 to 10.0 kJ mdlin increments of 2.0 kJ
mol~1. Table 3 shows the variation of population for increasing

otential energy. Columns with GV indicate that the populations are computed

It is important to recall that the exclusive use of the potential
energy is based on the assumption of the classical flexible
model” Thus, to be consistent with the model, the nonconfor-
mational coordinates should be fixed at some time-averaged
values. Therefore, it is not physically consistent to compute the
conformational partition function from a Boltzmann distribution
involving only a relaxed potential. If a relaxed potential is used,
eq 13 for the conformational partition function must be applied.
Only when the difference between conformers is higher than
about 2.0 kcal mof* can the effect of the G matrix be neglected.
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